

ESGF + DOCKER

ESGF F2F Workshop, Washington, DC, December 2016

Luca Cinquini

NASA/Jet Propulsion Laboratory + California Institute of Technology

Docker in a Nutshell

- Docker is the leading "containerization" technology: run an application as a "black box" on any Docker-enabled server
 - ▶ Build: images are built as bundles that include the application itself, all of its dependencies, and "just-enough-operating-system"
 - ▶ Ship: images are hosted on online repositories such as DockerHub
 - ▶ Run: images are run as containers on any host that includes a Docker daemon

- Why using Docker for ESGF?
 - ▶ Promises to greatly improve installation and maintenance of an ESGF node
 - ▶ Part of DREAM strategy for modularizing the ESGF architecture and porting it to other domains

Demo: Install and Run an ESGF Node

- Pre-requisite: install Docker Engine on host (Linux, MacOSX, Windows)
- Instructions:
 - ▶ git clone https://github.com/ESGF/esgf-docker.git
 - cd esgf-docker
 - export ESGF_HOSTNAME=<host FQDN>
 - export ESGF_CONFIG=<some directory>
 - ./esgf_node_init.sh
 - docker-compose up

https://hub.docker.com/esgfhub/

https://my-node.esgf.org/

TDS

CoG

Solr

ESGF/Docker complete Node Architecture

<u>docker-compose -f docker-compose.yml up</u>

- All ESGF services are run as independent, interacting Docker containers
- Specific Node configuration (certificates, passwords, XML files) saved in \$ESGF_CONFIG
- Specific Node data (Postgres db, Solr indexes, TDS catalogs, NetCDF files, CoG site media) stored on Docker volumes
- Custom networks isolate applications for additional security (for example, Postgres db)

Docker Details

Dockerfile: "recipe" for building a Docker image

```
node — vi Dockerfile — 80×44
# Docker image based on Centos 6.7 that includes:
# Oracle Java 8
# Python 2.7 + a few common Python packages
# Also includes common, non-site specific ESGF env variables (ESGF_HOME).
FROM centos:centos6.7
MAINTAINER Luca Cinquini <luca.cinquini@jpl.nasa.gov>
# install dependencies with yum
RUN yum -y update && \
    yum groupinstall -y development && \
    yum install -y \
    vum-utils \
    bzip2-devel \
    git \
    lsof \
    which \
    hostname \
    openssl \
    openssl-devel \
    sqlite-devel \
    sudo \
    tar \
    wget \
    zlib-dev \
    sglite-devel \
    freetype-devel \
    postgresgl-devel \
    libjpeg-turbo-devel && \
    vum clean all
# install Oracle Java 8
ENV JAVA VERSION 8u31
ENV BUILD_VERSION b13
RUN wget --no-cookies --no-check-certificate --header "Cookie: oraclelicense=acc
ept-securebackup-cookie" "http://download.oracle.com/otn-pub/java/jdk/$JAVA_VERS
ION-$BUILD_VERSION/jdk-$JAVA_VERSION-linux-x64.rpm" -0 /tmp/jdk-8-linux-x64.rpm
RUN yum -y install /tmp/jdk-8-linux-x64.rpm && \
    rm /tmp/jdk-8-linux-x64.rpm
RUN alternatives --install /usr/bin/java jar /usr/java/latest/bin/java 200000
RUN alternatives --install /usr/bin/javaws javaws /usr/java/latest/bin/javaws 20
```

docker-compose.yml: configuration file for bundling several images

```
esgf-docker — vi docker-compose.yml — 80×44
# required env variables:
# ESGF_CONFIG : points to the root ESGF configuration directory
        example: export ESGF_CONFIG=/Users/cinquini/ESGF_CONFIG
 ESGF_HOSTNAME: HostName or IP address for apache httpd front-end server
        example: export ESGF_HOSTNAME=my.esgf.node
        example: export ESGF_HOSTNAME=`docker-machine ip`
# ESGF_DATA_DIR: root of ESGF data directories
version: '2'
networks:
 # network to keep postgres database isolated
  dbnetwork:
services:
  # ESGF Data Node
  esgf-data-node:
    image: esgfhub/esgf-data-node
    container_name: data-node
    expose:
      - "8080"
      - "8443"
    ports:
      - "8080:8080"
      - "8443:8443"
    networks:

    default

    dbnetwork

    volumes:
      tds_data:/esg/content/thredds
    volumes_from:

    esqf-confiq

    environment:

    ESGF_HOSTNAME

    depends_on:

    esgf-postgres

  # ESGF Identity Provider
  esgf-idp-node:
    image: esgfhub/esgf-idp-node
    container_name: idp-node
"docker-compose.yml" 190L, 4544C
```


ESGF/Docker Data Node Architecture

docker-compose -f docker-compose-data-node.yml up

ESGF/Docker Index Node Architecture

<u>docker-compose -f docker-compose-index-node.yml up</u>

Using standard Solr replication + distributed search

ESGF/Docker Index Node with Solr Cloud

<u>docker-compose -f docker-compose-solr-cloud.yml up</u>

- Solr-Cloud advantages:
 - ▶ Automatic distributed indexing and searching (no custom configuration)
 - ▶ Load balancing and high availability
 - ▶ Fault tolerance
 - ▶ Scalability

Advantages of using Docker for ESGF

• Installation:

- ▶ Installation scripts are much more modular and much smaller
- ▶ Installation process is mush easier: simply download the images, no compilation involved
- ▶ Easier upgrades, possibly one module at a time, and reversible
- ▶ Everybody runs exactly the same software

• Architecture:

- ▶ Can define and deploy new architectures by simply writing new configuration files
- ▶ Can introduce new modules by simply writing & wiring new images (solr-cloud, nginx, ...)
- Portability: ESGF node will run on any platform (Linux, MacOSx, Windows) including Cloud
- Scalability: modules can be scaled arbitrarily by running more containers (e.g. TDS, WPS...)
 - ▶ Caveat: application must be written to enable distributed access to data
- Other Docker/Swarm advanced features:
 - ▶ Scalability onto multiple hosts clusters
 - ▶ High availability, fault tolerance, rolling updates, ...

Disadvantages of using Docker for ESGF

- Docker is a <u>new paradigm</u> for building and running applications:
 - ▶ New knowledge for application developers
 - ▶ New training for node administrators
 - ▶ Excellent and up-to-date documentation is a must
- Must port the remaining ESGF modules to Docker:
 - **▶** ESGF Publisher Client
 - ▶ Globus
 - ▶ MyProxy or new OAuth server
 - Desktop + Dashboard
 - **LAS**
- Must develop a process to migrate all application data:
 - ▶ ESGF Postgres database (users and data)
 - ▶ TDS catalogs
 - ▶ Solr indexes
 - ▶ CoG Postgres database and site data

Possible Future Roadmap

- Establish a "whale team" of experts to work on:
 - ▶ Test the current infrastructure
 - ▶ Port the remaining modules
 - Work on other outstanding tickets
 - Develop a testing suite
 - Develop data migration tools
 - ▶ Revise and expand the documentation
 - ▶ Re-use current esgf-iwt biweekly meetings ?
- Migrating to Docker would take 6-12 months
 - ▶ Must support current or upgraded installed in the meantime
 - ▶ Might want to switch after CMIP6 looking into the long-term longevity of ESGF...

